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If we want to advance human-robot interaction towards long-term sustainability, we need

to understand how users’ perceptions and responses to robot behavior develop across
multiple sessions. To this end, we set up a study in which children interacted face-to-face

in three sessions on different days with a humanoid robot that engaged in a quiz, dance
or imitation activity, in one of two conditions: the robot either gave explicit verbal and
non-verbal signals of being familiar with the user from previous interactions, or it did not.

The robot system relied on a human wizard to interpret the user’s speech and gesture

input, but the rest of the system behavior was produced automatically. A preliminary
analysis of a small subset of the interactions published elsewhere indicated that the

children adapted various aspects of their verbal and non-verbal conversational behavior
to the robot, just as humans generally adapt to their conversational interlocutors in a
way that fosters the predictability, intelligibility, and efficiency of communication. We

therefore carried out a follow-up systematic analysis of all quiz interactions focusing

on the children’s verbal turn-taking behavior. We found that communication problems
such as speech overlaps and child speech ignored by the robot are decreasing across the

three sessions. Moreover, these problems are fewer and decrease faster when the robot
explicitly signals familiarity with the user. In this paper we present the experiment

method, describe the dialogue management and verbal output production implemented

in the system, and report the results of the children’s turn-taking adaptation analysis.

Keywords: child-robot interaction; long-term interaction; verbal behavior adaptation;
turn-taking; familiarity display; dialogue management; natural language generation
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1. Introduction

As social robots are getting more commonplace, it is likely that they will inter-

act face-to-face with humans over longer, discontinuous stretches of time. Various

experiments in long-term face-to-face human-robot interaction have already been

carried out.25,23,26,29 These have for example attempted to identify factors that

contribute to long-term engagement. In order to enable robots to engage in and

sustain effective long-term face-to-face communication, it is of course important to

understand what social competencies the robots need to have. We believe, however,

that besides understanding suitable robot behavior, it is equally very important to

understand how humans behave in interaction with robots and how their perception

of and response to robot behavior develops over time in multiple sessions. One such

aspect is adaptation of verbal behavior.

Interpersonal conversation is a dynamic adaptive exchange where an interlocu-

tor’s verbal and non-verbal signals are adjusted to the conversational partner (and

the situation) in a way that fosters the predictability, intelligibility, and efficiency

of communication, and also manages social impressions (cf. for example the Com-

munication Accommodation Theory).22,11 Since it is by now also well established

that humans tend to treat computers as social actors and respond to them as they

would to another person,35 it can also be expected that humans adapt their conver-

sational behavior to computers. And indeed, there is growing evidence that humans

adapt various aspects of their verbal and non-verbal behavior to those of the com-

puter interfaces they interact with. Concerning linguistic adaptation, for example,

experiments with text-based human-computer interaction show lexical and syn-

tactic adaptation of users to the system.21,10,9. Systematic work on speech signal

feature adaptation of users in spoken human-computer interaction is also start-

ing to emerge.33 However, verbal behavior adaptation in face-to-face interaction

with robots remains to be studied. Moreover, human adaptation to systems has so

far been studied in one-shot, relatively short encounters. Persistence of adaptation

across sessions has not been addressed.

In our work we investigate adaptation of children in face-to-face interaction with

robots across multiple sessions. In a previous study we found that children adapt

various aspects of their verbal and non-verbal behavior, including speech timing,

speed and tone, verbal input formulation, nodding and gestures.31

In this article we investigate children’s verbal turn-taking adaptation. We found

that adaptation increases across multiple sessions. Moreover, we found that children

adapt their verbal turn-taking behavior more readily when the robot gives explicit

signals of familiarity with the child across sessions, for example by using their name

or referring to previous experiences. The children who interact with a familiarity-

displaying robot wait more with speaking, in order to avoid speech overlaps, and

produce less turns that end up ignored by the robot. So overall, there is more adap-

tation in a condition with familiarity display in comparison to a condition where

the robot’s behavior is neutral in this respect. In Section 2 we present the experi-
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ment method. Section 3 describes the approach to dialogue management and verbal

output production implemented in the experiment system. Data analysis results are

presented and discussed in Section 4, conclusions and outlook in Section 5.

This work is carried out in the larger context of the Aliz-E project.a The goal

of Aliz-E is to develop the theory and practice behind cognitive robots capable

of maintaining believable any-depth affective interactions with young users over

an extended and (possibly) discontinuous period of time. Different strategies for

achieving this goal (with children) are studied in the project.

2. Experiment Method

2.1. Participants

Participants were recruited by invitation letters sent to the members of the dia-

betes association connected to the San Rafaelle hospital in Milan and information

brochures displayed at the hospital. Both contained a link to a website to make an

appointment. The experiment took place on Saturdays in March – May 2012.

19 children participated in the experiment (Italian, 11 male, 8 female; age 5-12),

but only 13 were able to participate in three sessions on different days as foreseen

in the protocol. Table 1 shows demographic data of these 13 children (average age

eight, SD=1.85). Although the experiment invitation was distributed through the

diabetes association, more than half of the participants had no ailments.

Table 1. Demographic data distribution of the 13x children who completed 3 sessions.

Participant characteristics Frequency

Gender Male: 9; Female: 4

Education level Preschool: 1; Elementary school: 11; Middle school: 1
Diabetes type I Male: 5; Female: 1

2.2. Procedure

Upon arrival to their first session of the experiment, the child and the accompanying

person were given an introduction comprising the following information:

General introduction We are building a robot to support hospitalized children.

The child is there to test the current functionality and so help the devel-

opment.

Experiment execution The child has three sessions on different days and every

time it has one or more interactions with the robot. The robot is able to

engage in three different activities: quiz, dance and imitation. The child

ahttp://www.aliz-e.org/
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selects one of the activities as the main one, which will be performed in

the first interaction in every session. If there is sufficient time for a second

interaction within a session, the child can select a second activity freely

in each session. There is no right or wrong behavior, the child should just

behave naturally during the interactions. Questionnaires will be filled in

before and after each interaction. These are important for us to understand

what the child thinks of the robot.

Robot disclaimer The robot might be quite slow, make mistakes, or have techni-

cal problems (e.g., motors too hot, low battery, system failure). In case of

technical problems, an adult will enter the room and manage the situation.

Activity-specific instructions A general introduction about each activity is

given, to ensure the child knows what to expect and what to do.

After this introduction, a consent form is signed and pre-interaction question-

naires are filled in (demographic information, hobbies and use of technology, selec-

tion of the main activity). Then the first interaction starts, featuring the activity

the child selected as main. The robot greets the child, introduces itself by name and

asks for the child’s name. Then it explains the activity, and asks the child whether

it wants to play. The child can end the interaction at any point. At certain points

during the activity (e.g., end of a phase, or a game round) the robot explicitly

asks whether the child wants to continue. The interaction duration is not fixed: the

child may quit the interaction, or continue as long as it wants, up to a limit of 30

minutes (unless the interaction has to be ended earlier for technical reasons). If the

child continues playing for 30 minutes, the robot apologizes that it needs to end the

interaction to take some rest. At the end of an interaction, the robot asks the child

whether they liked to play, states that it enjoyed it and is hoping to play again,

and gives the child good-bye. The child then fills in a post-interaction questionnaire

for self-assessment of its engagement and relationship to the robot, and its opinions

about the robot and the interaction.

Time permitting, the child can select a second activity and have another inter-

action with the robot, followed by filling in the post-interaction questionnaire again.

The whole session is limited to one hour, including the questionnaire-filling time.

The second and third sessions take place on different days. The general intro-

duction is not repeated, the child starts an interaction with the robot immediately

with the main activity. The robot greets the child, but does not repeat the name-

and activity-introductions. The rest of the process is the same as in the first session.

Table 2 shows activity selection distribution for the 13 children who completed

all three sessions. About half of them were able to have two interactions in the first

session (6/13). In the second and third session, most children had two interactions

(11/13 and 9/13, respectively). 11 children selected quiz as their main activity. Quiz

was therefore featured in more than half of all the interactions (37/65).
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Table 2. Activity selection of the 13 children with 3 experiment sessions.

Session 1 Session 2 Session 3 Total

Activity Main Second Main Second Main Second

Imitation 1 - - 6 1 4 12
Dance 1 4 2 3 1 5 16

Quiz 11 2 11 2 11 - 37

Total 13 6 13 11 13 9 65

2.3. Activity Description

The following activities were available (Figure 1 shows children and robot in action):

Quiz The child and the robot ask each other multiple-choice quiz questions from

various domains (e.g., diabetes, nutrition, sports, geography, history, sci-

ence). The asker provides correctness feedback. The asker can reveal the

correct answer after two wrong attempts or upon request. The robot makes

mistakes on purpose (with an answer error rate of about 30%), in order to

avoid frustrating the child by a too good performance. At the end of each

round the robot provides a summary of the number of correct and incorrect

answers and a short evaluative comment. A round of quiz normally consists

of four questions asked by the same asker, the child can however propose

to switch roles at any time.

Dance The robot first explores various dance moves with the child and then teaches

it the individual movements of a dance sequence chosen according to the

child’s abilities. After the child learns three movements, the robot plays mu-

sic and they try together the movements learned so far. The robot provides

encouraging feedback on the child’s performance.

Imitation Either the child or the robot presents a sequence of simple arm poses

(right/left arm up/down), and the other tries to memorize and imitate it.

If there is a mistake, the imitator has one more attempt. Then they switch

roles and the game goes on. The game starts with a one-pose sequence, and

as it progresses, the sequences get longer by one pose every round. At the

end of the game the robot provides a summary of the number of correct

Fig. 1. Children playing with the robot during the experiments. Left to right: quiz, dance, imitation.
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6 I. Kruijff-Korbayová, H. Cuayáhuitl, B. Kiefer, M. Nalin, I. Baroni, A. Sanna

and incorrect imitations and a short evaluative comment.

Besides activity-specific conversation, the interactions involve also a social com-

ponent, such as greetings and introductions. When the robot provides performance

feedback to the user during an activity, the social aspect requires careful handling

of the evaluation process so as not to discourage the user with negative feedback.

Preference is given to positive or encouraging comments on the child’s performance.

No comparison of the child’s and the robot’s performance is made in this version of

the system, to avoid a focus on competition.

2.4. Familiarity Display vs. Neutral Display Condition

Long-term interaction involves series of encounters between the robot and a given

user. As the robot interacts with a particular user, they become familiar with each

other, i.e., they accumulate shared knowledge (shared history, personal common

ground).13 For example, they can know each other’s name, performance on a game,

ways of speaking or nonverbal behaviors. Familiarity increases over time.

In the experiment we compared two versions of the system in a between-subjects

design: In the familiarity-display (FD) condition, the robot tries to foster a sense

of persistence and familiarity. It uses verbalizations explicitly acknowledging and

refering to the shared history with a given user, thus making it explicit that it is

familiar with the user and remembers the previous encounters. Such verbal moves

are accompanied by nonverbal behaviors showing familiarity, e.g., nodding, higher

excitement. In the neutral display (ND) condition, the system only uses verbaliza-

tions that are neutral with respect to familiarity, i.e., they do not signal familiarity.

Examples of verbalizations from both conditions are shown in Table 3.

Table 3. Examples of verbalizations that signal familiarity (used in the FD condition) or are neutral in

this respect (used in the ND condition).

Familiarity display Neutral display

Use of user’s name:

So, which answer do you choose, Marco? So, which answer do you choose?

References to previous encounters and play experiences:

I am happy to see you again. I am happy to see you.

It was nice playing with you last time. –

References to previous performance in an activity:

Are you ready to play quiz again? Are you ready to play quiz?
Today you were again really good at quiz. Today you were really good at quiz.

Well done, you’ve done better than last time Well done.

Reference to familiarity of a quiz question or a dance move:
The next question should sound familiar. The next question.

Let’s try again this move: the spring step. Let’s try this move: the spring step.

Reference to familiarity of activity rules:

Remember the magical pose? Now the magical pose.
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2.5. System

We used Nao, a humanoid robot from Aldebaran Robotics.b Nao is 57 cm tall, weighs

5.2 kg and its body has 25 degrees of freedom. It has a cartoon-like appearance which

is considered especially suitable for use with children, although it has no capability

for facial articulation.

The experiment was carried out using the human-robot interaction system de-

veloped in the Aliz-E project. The system integrates components for speech and

gesture capture and interpretation, activity and interaction management, user mod-

eling, speech and gesture production and robot motor control (Figure 2). We

use components developed within the project as well as off-the-shelf technolo-

gies such as Julius and HTK for speech recognition, OpenCV for gesture recog-

nition, Acapela and MARY for speech synthesis, OpenCCG for language parsing

and generation, Weka and JavaBayes for maintaining a probabilistic personalized

user profile.24,43,8,1,19,32,42,14 To bring all components together within a concurrent

execution approach we use the Urbi middleware.2 More details on system imple-

mentation have been published elsewhere.27,28.

Middleware

Speech Recognizer,
Voice Act. Detector,

Audio Frontend

Dialogue ManagerGame Move
Generator

Wizard-of-Oz GUI

Parser, Dialogue Act
Classifier

Gesture Recognizer

User Model

Language Generator

Speech Synthesizer

Motor Control

user and
system

dialogue acts system
dialogue acts,

text

text, speech

word lattices

logical forms,
user dialogue

acts

dialogue acts,
text

questions,
answers user data

gesture acts system
dialogue acts,

motor
commands

Fig. 2. High-level architecture of the integrated system.

Although the system was presented as fully automatic to the children, we relied

on a human Wizard to simulate the recognition and interpretation of the user’s

speech and gestures. The Wizard first selects an interpretation of the user’s input

in a GUI (Figure 3 shows an instance of the GUI during a quiz interaction). Then the

next system action is selected by the Dialogue Manager component (Section 3.1),

while the Wizard has the possibility to override the automatic selection if needed.

Only in several quiz interactions early in the experiment the Wizard simulated the

next system action selection entirely, due to technical issues.

The dialogue act corresponding to the selected next system action is verbalized

bwww.aldebaran-robotics.com
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Fig. 3. The Wizard’s GUI. The buttons at the top allow the Wizard to start, pause and abort the

interaction, toggle automatic dialogue management, speech recognition and synthesis, and trigger

arm poses for imitation as well as several communicative gestures. The large pane on the left
shows a transcript of the interaction, the middle pane lists the possible next actions of the system,

and the right-most pane lists possible interpretations of user input. Those options that the system

expects at a given point are highlighted as suggestions for the Wizard, to make their task easier.

automatically by the natural language generation component which produces text

for the speech synthesizer. The generation process is divided into the two classical

steps of utterance planning and lexical realization:36 The utterance planner takes

as input the dialogue act and any additional relevant information from the DM and

constructs a linguistically motivated semantic structure, which in turn serves as

input to a grammar-based lexical realizer to produce the corresponding utterance

verbalization. The utterance planner, which was inspired by the KPML system5, is

implemented as a general rule-based graph rewriting engine. For lexical realization

we use the open source natural language processing library OpenCCG,32 which pro-

vides parsing and realization services based on Multimodal Combinatory Categorial

Grammar (CCG).3,4 However, in the system used in the experiment we employed

a canned-text approach to generation, where the utterance planning and lexical re-

alization steps are combined: The utterance planner component turns the input it

gets from the dialogue manager directly into one or more utterances.c We will talk

more about the verbalization process in section 3.2, especially about verbalization

variablity.

Nonverbal behavior planning and motor control are also automatic and include

dance movements and imitation poses, communicative gestures assigned to specific

types of dialogue acts (e.g., greetings, requests) and static key poses displaying

emotions namely anger, sadness, fear, happiness, excitement and pride.6

cThe reason for using the canned-text approach is development speed: We were able to include
alternative verbalizations, without first having to ensure grammar coverage for their realization.
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To summarize, these features describe the system used in the experiment:

• Speech and gesture recognition simulated by a Wizard

• System action selection automatic with the possibility of Wizard override

• User barge-in: Interruption of the robot’s speech by an early child response

• Automatically produced verbal output in Italian with many variations and

expressive speech synthesis distinguishing sad, happy and neutral state

• Automatically produced head and body poses and gestures

• Persistent user-specific interaction profile

During the experiment the robot was standing or kneeling on a table, the child

is sitting (for quiz) or standing (for dance and imitation) in front of the table

(Figure 1). An additional camera recorded the interaction and its video and audio

signal was transmitted to the Wizard in another room.

2.6. Collected Data

The data collected in the experiment consists of the pre- and post-interaction ques-

tionnaires, video and audio recordings of the interactions and system logfiles.

3. Automatic System Action Selection and Verbalization

In this section we provide more details on our approach to dialogue management

and verbal output production for the quiz interactions, as these components are

responsible for the system behavior that is most relevant for the analysis of user

adaptation presented in this paper.

3.1. Dialogue Management

The dialogue manager (DM) component carries the primary responsibility for con-

trolling the robot’s conversational behaviour in our system.16 It keeps track of the

interaction state, and integrates the interpretations of the user’s input/actions with

respect to this state. In addition, it queries and updates the game move generator

and user model components, and selects the next action of the system as a transi-

tion to another state, making progress towards a goal. The next system action is

selected according to a set of policies that specify a mapping from dialogue states

describing situations in the interaction, to (communicative) actions. The dialogue

policies are learnt offline from a simulated environment partially estimated from

real interaction data.

The role of dialogue policy learning is important to optimize dialogue behaviours

rather than using purely hand-coded dialogue policies. Since hand-coding dialogue

behaviours for complex speech-based or multimodal systems is a daunting task,

researchers have turned their attention to machine learning dialogue systems to

support adaptive interactions. The reinforcement learning framework has been a
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promising direction.30 Unfortunately, applying such a framework to complex dia-

logue systems (i.e. systems with large state-action spaces) is not a trivial task. The

need for machine dialogues that support flexible, complex, optimal and robust in-

teractions is still a long standing problem that deserves to be further investigated.

Previous work in human-robot interaction does not optimize dialogue control or op-

timizes it with flat learning.7,41 We apply the Hierarchical Reinforcement Learning

(HRL) approach described below that aims to overcome some of these problems.

At the core of our framework, dialogue management is cast as a discrete Semi-

Markov Decision Process (SMDP) in order to address the problem of scalable dia-

logue optimization. Such a discrete-time SMDP M = <S,A, T,R, L> is character-

ized by the following elements: (a) a finite set of states S; (b) a finite set of actions

A; (c) a stochastic state transition function T (s′, τ |s, a) that specifies the next state

s′ given the current state s and action a, τ denotes the number of time-steps taken

to execute action a in state s; (d) a reward function R(s′, τ |s, a) that specifies the

reward given to the agent for choosing action a when the environment makes a

transition from state s to state s′; and (e) L is a language that provides the mech-

anism to express tree-based state representations. We describe L as a context-free

grammar to represent formulas constructed from predicates, functions, variables,

constants and connectives.37

We distinguish two types of actions: (a) single-step actions roughly correspond-

ing to dialogue acts or actions such as ‘greeting’ or ‘ask question’, and (b) multi-step

actions corresponding to sub-dialogues or contractions of single-step actions such as

‘robot asks’ or ‘user asks’. We treat each multi-step action as a separate SMDP. 17,15

In this way, an MDP can be decomposed into multiple SMDPs which are hierarchi-

cally organized into X levels and Y models per level, denoted as µ = {M i
j}, where

j ∈ {0, ..., X− 1} and i ∈ {0, ..., Y − 1}. The indexes i and j only identify a subtask

(i.e. SMDP) in a unique way in the hierarchy, they do not specify the execution se-

quence of subtasks because that is learnt by the reinforcement learning agent. Thus,

a given SMDP in the hierarchy is denoted as M i
j = <Si

j , A
i
j , T

i
j , R

i
j , L

i
j>. The solu-

tion to a Semi-Markov decision process is an optimal policy π∗, which is a mapping

from environment states s ∈ S to single- or multi-step actions a ∈ A. In other words,

the goal of an SMDP is to find a function denoted as π∗(s) that maximizes the cu-

mulative reward of each visited state. The optimal action-value function Q∗(s, a)

specifies this cumulative reward for executing action a in state s and then following

policy π∗. The optimal policy for each learning agent in the hierarchy is defined by

π∗ij (s) = arg maxa∈Ai
j
Q∗ij (s, a). We use the HSMQ-Learning algorithm to induce

a hierarchy of policies.20 More recently we have extended such an algorithm with

more flexible interactions by relaxing the strict hierarchical control.16

We use the hierarchy of dialogue agents shown in Figure 4. Table 4 shows the set

of state variables for our system, each one modelled as a discrete probability distri-

bution with predefined parameters. Dialogue and game features are included to in-

form the agent of situations in the interaction. Our action set consists of meaningful
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Root

Robot
asks questions

User
asks questions

Game
level

Sub-game
level

M0
0

M1
0 M1

1

Fig. 4. Hierarchy of dialogue agents for our robot in the Quiz domain.

Table 4. State variables for modeling the quiz interactions, where combinations of variable-value pairs

define situations in the interaction used by the DM for action-selection.

State Variable Values

Salutation none, greeting, withName, regreeting, closing

UserName unknown, filled, known
ConfScore null, 0.1, 0.2, 0.3, 0.4, 0.5, ... , 0.9, 1.0
Confirmed null, no, yes

PlayGame unknown, no, yes, ready
Instructions unprovided, provided
Asker unknown, robot, user

QuizGame unplayed, playing, semiplayed, played, interrupted, keepPlaying, stopPlaying
GameFun unknown, no, yes
GameOver no, yes
GameInstructions unprovided, provided

QuestionState null, unknown, unasked, askedWithAnswers, askedWithoutAnswers,
reaskedWithAnswers, reaskedWithoutAnswers, confirmed

AnswerState unanswered, unclassified, correct, incorrect, unknown

MaxQuestions no, yes
GameScore unknown, good, bad
GlobalGameScore null, unprovided, provided

ExpressedScore no, yes

combinations of dialogue act typesd and the associated parameterse. We constrained

the actions per state based on the CFGs Li
j , i.e. only a subset of sensible actions

was allowed per dialogue state. While our HRL agent with tree-based states has 104

state-actions, a static, propositional representation (enumerating all variables and

values) has 1012 state-action pairs. This makes the hierarchical tree-based repre-

sentation scalable to larger sets of state variables and actions. The reward function

addressed efficient and effective interactions by encouraging to play and get the

right answers as much as possible. It is defined by the following rewards for choos-

ing action a in state s: +10 for reaching a terminal state or answering a question

dDialogue act types: Salutation, Request, Apology, Confirm, Accept, SwitchRole, Acknowledge-
ment, Provide, Stop, Feedback. Express, Classify, Retrieve, Provide.
eParameters: Greeting, Closing, Name, PlayGame, Asker, KeepPlaying, GameFun, StopPlaying,
Play, NoPlay, Fun, NoFun, GameInstructions, StartGame, Question, Answers, CorrectAnswer, In-
correctAnswer, GamePerformance, Answer, Success, Failure, GlobalGameScore, ContinuePlaying.
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correctly, −10 for remaining in the same state (i.e. st+1 = st or st+1 = st−1), and

0 otherwise.f The DM learnt its behaviour offline by interacting with a stochas-

tic simulated user. The simulated user acts were estimated using bigram language

models P (ausr|asys) with Witten-Bell discounting from pilot interactions. A sample

dialogue together with dialogue act lables is shown in Table 5.

3.2. Verbal Output Production

The verbal output of the system is produced by the natural language generation

(NLG) and Text-To-Speech Synthesis (TTS) components. The task of the NLG

component is to produce an utterance that verbalizes the dialogue act corresponding

to the next system action selected by the DM.

To avoid repetitive verbalizations, we invested considerable effort to implement

a large range of verbal output variation. Selection among variants is either random

or controlled by selection criteria. Some selection criteria refer to characteristics of

the content to be conveyed, e.g., how many answer options a quiz question has and

whether they are short or long. Other selection criteria refer to various parame-

ters of the context, e.g., the user’s gender, how many quiz questions have already

been asked, who is the current asker, etc. An important selection criterion is the

familiarity display condition: only when the robot is to explicitly display familiar-

ity, verbalization variants are used that include the child’s name and/or explicitly

refer to the interaction history (Table 3). In this case utterance planning uses the

information whether the current user interacts with the system for the first time or

it is a subsequent encounter, whether they have already played the current game or

it is new, whether the user’s previous performance was good or not, etc.
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Fig. 5. Unique sentence count per iteration of the full utterance planning rule set

We assessed the output verbalization variability by letting the utterance planner

run for many iterations using a test corpus of 530 input structures that covered the

59 dialogue acts implemented in the experiment system with a variety of parameter

fA reward function induced automatically (e.g. using correlation and linear regresssion analyses18)

from richly-annotated multimodal interactions is left as future work.
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Table 5. Sample quiz interaction (user utterances in italics). Utterance groups correspond to subtasks in the

hierarchy of dialogue agents.The dialogue acts with the star symbol omit parameter values for space reasons.

Agent Dialogue Act Utterance
Rob Salutation(Greeting) Hi, my name is NAO, and you?
Usr Provide(Name=Danilo) I am Danilo
Rob Salutation(withName, Name=Danilo) Nice to meet you Danilo.
Rob Request(PlayGame, Game=Quiz) Do you want to Play a Quiz game?
Usr Confirm(PlayGame=yes) Sure
Rob Provide(Instructions) One of us asks questions and offers possible answers.

The other answers by selecting one of those answers.
Do you want to ask me questions or shall I ask you?

Usr Provide(Asker=robot) You ask me
Rob SwitchRole(Asker=Robot) Okay, I’ll ask you.

Retrieve(Question)+Provide(Question*) The question is. What is the typical magic instrument?
Provide(Answers*) Your choices are: 1, guitar. 2, drums. 3, violin. 4, flute.
Request(Answer) What is your choice?

Usr Provide(Answer=drums) Number two
Rob Feedback(IncorrectAnswer) That is not quite right.

Request(AnswerAgain) Do you have another choice?
Usr Provide(Answer=violin) May be number three
Rob Provide(CorrectAnswer=flute) The correct answer is number four, flute.

Retrieve(Question)+Provide(Question*) The next question is. Which one of these is an
important artificial channel of the central America?

Provide(Answers*) Your choices are: 1, channel five. 2, Panama canal.
3, Suez canal. 4, English channel.

Request(Answer) What is your choice?
Usr Provide(Answer=Panama canal) Panama canal
Rob Feedback(CorrectAnswer) Yes, correct.

Retrieve(Question)+Provide(Question*) The next one is.
Which are the elements of the football goal?

Provide(Answers*) Your choices are: 1, poles, cross and net.
2, cross, net and arbiter. 3, poles, ball and grass.

Request(Answer) What is your choice?
Usr Provide(Answer=poles, cross and net) The first one
Rob Feedback(CorrectAnswer) Yes, correct.
Rob Provide(GamePerformance*) Well done, you got right two questions out of three.
Rob SwitchRoleTo(user) Okay, let’s switch roles. Now you ask me.
Rob Request(Question) What is the first question.
Usr Provide(Question*) The first question is: What does water become

at the temperature of zero degrees?
Rob Request(Answers) What are my choices?
Usr Provide(Answers) Your choices are: 1, condensation. 2, ice. 3, steam.
Rob Provide(Answer=condensation) I choose condensation.
Usr Feedback(IncorrectAnswer) That is incorrect.
Rob SelfFeedback(IncorrectAnswer) Oh no.
Rob Request(CorrectAnswer) So what is the right answer?
Usr Provide(CorrectAnswer=ice) The correct answer is number two.
Rob Request(Question) Okay, ask me another question.
Usr Provide(Question*) The next question is. Through which breach

the Italian army entered in Rome in 1870?
Rob Request(Answers) What are my choices?
Usr Provide(Answers) Your choices are: 1, porta venezia.

2, porta pia. 3, porta pazienza. 4, porta nuova.
Request(Answer) What is your choice?

Rob Provide(Answer=Porta pia) Porta pia
Usr Feedback(CorrectAnswer) Yes, that’s right.

Provide(Question*) The next question is. What is the plural of I?
Usr Request(Answer) Your choices are: 1, they. 2, you. 3, we.

Request(Answer) What is your choice?
Rob Provide(Answer=we) I think is we.
Usr Feedback(CorrectAnswer) Yes, correct.
Rob Provide(GamePerformance*) Not bad, I got right two questions out of three.

Request(KeepPlaying) Shall we keep playing?
Usr Provide(QuizGame=stopPlaying) I want to stop.
Rob Provide(GlobalGameScore*) In this session you got right 2 out of 3 questions.

Request(GameFun) Did you like playing the Quiz Game?
Usr Provide(GameFun=yes) I did.
Rob Acknowledgement(Fun) I am glad to hear that.
Rob Salutation(closing) It was nice playing with you, see you soon. Bye!
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values. As Figure 5 shows, convergence was achieved with a sequence of 40,000

iterations, which produced 59,296 unique sentences (not excluding substrings).

The number of alternative verbalizations varies greatly between dialogue acts.

While those dialogue acts that only appear once, such as name introduction or

activity explanation, have just a single verbalization, the often occurring ones have

tens to hundreds, some even thousands of variants, ensuring that the users are not

being exposed to repetitive system output.

For speech synthesis we used the open source Mary TTS platform19,38 with

an Italian voice built using the Mary TTS voice creation toolkit.39,27 In order

to contextualize the system speech we implemented the following prosody mod-

ifications, using the support Mary TTS provides for controlling the prosody of

HMM-based voices with symbolic markup:34 (a) Prosodic prominence modification

(stress): The NLG component labels focus words.40 The TTS component then mod-

ifies the prosodic realization by decreasing the speech rate and raising the pitch con-

tour on the focus words. (b) Emotional prosody modification: The dialogue manager

decides when the system output should be rendered with (non-neutral) emotional

colouring, either “sad” or “happy”. The TTS component then increases/decreases

the speech rate and the pitch contour, respectively.

4. Analysis and results

4.1. Engagement Analysis From Self-Assessment Questionnaires

The post-interaction questionnaires administered to the children asked them to

rate their happiness, relaxedness and amusement during the interaction, in order

to study their engagement. We used self-assessment questionnaires even though we

are aware that such self-reports from children often suffer from a ceiling effect, and

therefore are not a very reliable tool when used with children.

A first analysis of the questionnaire answers shows the following results: (a) a

smaller decline in happiness throughout the three sessions in the Familiarity Display

(FD) condition than in the Neutral Display (ND) condition (t(10)=2.70, p=0.02);

(b) increase in relaxation in both conditions (although this cannot be attributed only

to the robot’s effect, as the children were of course becoming more acquainted also

with the experiment environment and the personnel); (c) no statistically significant

effect or trend for amusement. Other ways of analysing the interaction data in order

to assess the children’s engagement are under way.

4.2. Analysis of Children’s Turn-Taking Adaptation From Video

It was noted informally and investigated in a preliminary analysis using video data

from three children, that children seem to adapt various aspects of their verbal

and non-verbal behavior, including speech timing, speed and tone, verbal input

formulation, nodding and gestures.31 Following up on these preliminary results, we

carried out a systematic analysis of turn-taking behavior using video data from all
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children who completed three quiz interactions. In this case we were also able to

study the effect of the FD vs. ND condition.

We only considered quiz interactions for the present analysis, for several reasons.

One, they constitute more than half of the collected data, and there are three quiz

interactions in three different sessions for each child that chose quiz as the main ac-

tivity (Table 2 in Section 2). Two, the quiz data is more consistently verbal, whereas

in dance and imitation, where physical movement is part of the activity, a large part

of the interaction is nonverbal. Three, quiz interactions are a good starting point

for studying face-to-face conversation because of their verbal character: Although

both the robot and the children use nonverbal behavior in quiz, it is to accompany

verbal communication, but almost never alone.

Data from N=10 children (equally distributed over FD/ND condition) were

included in this analysis, a total of 9.5 hours of video material.g Table 6 shows their

age and gender distribution.

Table 6. Age and gender distribution for the 10 children whose data were
included in the analysis.

Age Male Female Total

7 2 1 3

8 - - -

9 4 1 5
10 1 - 1

11 - 1 1

Total 7 3 10

4.2.1. Data Coding

The units that were coded were child speech segments (CSS). Any occurrence of child

speech was considered a CSS. A CSS could contain silence between stretches of child

speech, as long as there is no robot’s speech in between. It could be a single complete

utterance or a sequence of utterances (e.g., a quiz question followed by listing the

answer options), but also just an utterance fragment or a short acknowledgement or

feedback. It could also be a sequence of repetitions. A CSS could be the realization

of one or more dialogue moves (e.g., a quiz question plus a reguest for answer, or an

acknowledgment plus the next dialogue move, etc.). Since CSSs were not available

in the system logs, they were identified manually by the coders.

The following attributes were coded for each CSS:

Start time The CSS onset time relative to the beginning of the quiz interation.

gOf the 13 children who completed three interactions 11 selected quiz as the main activity. One

however experienced technical problems in the second session and we thus had to discard the data.



March 25, 2013 11:58 WSPC/INSTRUCTION FILE ijhr
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Timing An abstract characterization of the timing of the CSS w.r.t. the robot’s

speech. This attribute has three possible values:

Overlap The child and the robot speak simultaneously (at some point)

during the given CSS. Overlaps are coded irrespective of which inter-

locutor started speaking first.

Forced The child clearly waits with its speech until the robot finishes

speaking, or even until the robot produces a particular prompt, for

example a request for the next quiz question. The child waits, even

though it does not have to, since it knows what to say next, and it

could barge in. Only clear cases of the child obviously delaying its

speech are coded with this value.

Timely The CSS comes in a timely fashion, resulting in smooth turn-

taking (without an overlap or forced waiting). It might be that the

child waits a little with their speech, but not obviously so.

Robot’s reaction Whether the robot appears to take the CSS into account for its

next action. This attribute has two possible values:

Ignore The CSS has no or only a partial effect on the next action of the

robot, the robot carries on with the interaction as if (a part of) the

CSS did not occur. This often leads to the child repeating (part of)

their speech. An example of a partial effect is when the child presents

the next quiz question along with the answer options, but the robot

still asks for the latter. The ignore is not decided by the Wizard, most

of time it is caused by delays in the system (from the moment when

the wizard sends the command to the actual execution in the robot),

by the child’s barge, or by the child switching to another dialogue state

to which the robot is not prepared.

Not-ignore The robot’s next action is a coherent continuation of the in-

teraction given the CSS. The robot either immediately responds to the

CSS (e.g., answers a quiz question), or it moves on to an appropriate

next step.

Alignment Whether the child’s verbal behavior aligns with the robot’s expecta-

tions (i.e., the implemented strategy), in other words, whether the child

adheres to the foreseen interaction script. This is an attribute derived on

the basis of the other two, in order to see their combined effect. It has two

possible values:

Not-aligned The CSS has problems either in timing (overlap) or in the

robot’s reaction (ignore), or both.

Aligned The CSS has no overlap and is not ignored by the robot.

Table 7 summarizes the coding scheme. The 9.5 hours of quiz interaction videos

were coded by two independent coders (two of the authors). Inter-annotator agree-

ment was checked for the preliminary analysis reported elsewhere:31 the two coders
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Table 7. Coding scheme summary

Item Label Value

Start Time Start Time Time of the the CSS event

Timing Overlap There is overlap between CSS and robot’s

speech
Forced The child is clearly waiting for the robot to

finish before speaking

Timely The is no overlap in the speech

Robot’s reaction Ignore The CSS has no or only a partial effect on the
next action of the robot

Not ignore The robot’s next action is coherent with the
dialogue script

Alignment Not-aligned The CSS had either an overlap or an ignore

Aligned No overlaps or ignore in by the robot

coded independently the same 36 minutes of video of the same child to identify

overlap- and ignore-CSSs, and reached Cohen’s κ of 0.94, indicating very good re-

liability. For the analysis presented in this paper the data was divided between the

two coders, and merged afterwards.

4.2.2. Results

Since the next action selection was simulated by a Wizard in a few quiz interactions

in the first three weeks of the experiment and automatic later (Section 2.5), we first

checked whether the data from these interactions can be combined for analysis. We

found no statistically significant differences in either interaction speed (measured

in the number of CSS per minute) or in the timing and robot’s reaction factors. We

therefore feel justified to combine them for the analysis presented below.

Tables 8 – 11 show the distributions of the values coded in the data for the

factors of timing, robot’s reaction and alignment. We report the mean of each

factor averaged over the 10 children, separated per session and per condition. For

the analysis of the effect of growing familiarity across the three sessions and of

the FD/ND condition we use two-way Analysis of variance (ANOVA), where each

factor is a dependent variable and the session number and FD/ND condition are

independent variables.

Timing The results clearly show that the relative number of CSSs with forced

waiting is increasing over the three sessions (F(2, 29)=5.185, p=0.032), and it is

increasing more in the FD condition (F(1, 29)=4.570, p=0.021). Furthermore, the

children in the FD condition tend to force themselves to wait at least twice as much

as children in the ND condition. Figure 6 shows the trend of the CSSs with forced

waiting over the three sessions for the FD and ND condition.

The relative number of CSSs with overlaps appears to decrease across the three

sessions from 14.15% to 7.63% in the FD condition, and from 19.93% to 12.82% in
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Table 8. Distribution of CSS timing values across sessions and conditions (averaged over

10 children).

CSS timing

Forced (%) Timely (%) Overlap (%)

Session 1 2 3 1 2 3 1 2 3

FD cond. 04.17 10.98 15.90 81.68 77.50 76.47 14.15 11.52 07.63

ND cond. 00.94 05.03 07.83 79.13 79.07 79.36 19.93 15.91 12.82
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Forced waiting in turn-taking

Fig. 6. Change in the relative number of CSSs with forced timing (waiting) across sessions. The
x axis: session number. The y axis: the mean number of CSSs with forced waiting relative to the

total number of CSSs per interaction. The two conditions are shown in different line styles.

the ND condition. While the statistical significance of this improvement between

sessions is only weak (F(2,29)=2.586, p=0.096), the difference between the FD and

ND condition shows higher statistical significance (F(1, 29)=4.375, p=0.047).

Robot’s reaction The relative number of CSSs ignored by the robot drops across

the three sessions: from 23.05% to 9.05% in the FD condition and from 28.2% to

12.89% in the ND condition. This time there is statistical significance in both the

improvement across sessions (F(1, 29)=10.608, p=0.001) and the difference between

the FD and ND condition (F(1, 29)=5.121, p=0.033).

Alignment Combining the above aspects, the relative number of CSSs that are

aligned with the foreseen interaction script increases across the three sessions from

68.78% to 85.95% in the FD condition and from 62.16% to 79.44% in the ND con-

dition (Figure 8). Also these improvements show statistical significance in both the

improvement across sessions (F(1, 29)=9.436, p=0.001) and the difference between

the FD and ND condition (F(1, 29)=5.514, p=0.029).

It is also interesting to look at the improvements in alignment between the first

and the second session, the first and the third session, and the second and third ses-

sion. We performed both the Tukey-Kramer test for differences between means and
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Table 9. Data on robot’s reactions to child’s speech, extracted from

the video coding analysis.

Robot’s reaction

Ignore (%) Not-ignore (%)

Sessions 1 2 3 1 2 3

Familiar 23.05 09.67 09.03 76.95 90.33 90.97
Non-Familiar 28.20 19.13 12.89 71.80 81.87 87.11

Note: Mean of the percentage of the child speech acts which were
ignored or answered by the robot.
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Ignored speech acts

Fig. 7. Speech acts ignored by the robot. The x axis: the three days the children came to the
hospital. The y axis: the mean of the different children’s percentage of ignored speech acts over

the total number of speech acts. The two conditions are shown in two different line styles.

Table 10. Data on speech alignment, extracted from the video coding
analysis.

Alignment with the dialogue managed by the robot

Aligned (%) Not-aligned (%)

Sessions 1 2 3 1 2 3

Familiar 68.78 83.40 85.95 31.22 16.60 14.05

Non-Familiar 62.16 73.07 79.44 37.84 26.93 20.56

Note: Mean of the percentage of the speech acts aligned (i.e., nor

overlapped with the robot speech, nor ignored by the robot) and
not-aligned.

the Scheffe test for contrasts among pairs of means, using an α=0.05 for both tests,

and the result was the same: There is a significant difference between the first and

the second session (Sheffe statistic 3.10, critical value 2.59; Tukey-Kramer statistic

4.384, p=0.0131), and between the first and the third session (Sheffe statistic 4.19,

critical value 2.59; Tukey-Kramer statistic 5.919, p=0.0010), but not between the
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Fig. 8. Aligned speech acts in the dialogue. The x axis represents the three days the children came

to the hospital, the y axis represents mean of the different children’s percentage of aligned speech
acts over the total number of speech acts. The two conditions are shown in two different line styles.

second and the third session (Sheffe statistic 1.09, critical value 2.59; Tukey-Kramer

statistic 1.535, p=0.5322).

Table 11. Verbalization rate, calculated as the number of speech acts

in a session, divided by the duration of the session. Table reports

the mean for all the children (N=10).

Verbalization rate

Sessions 1 2 3

Familiar 3.13 2.89 2.78

Non-Familiar 4.71 3.85 3.50

CSS Rates The number of CSSs per minute appears to be decreasing from 3.13

to 2.78 in the FD condition, and from 4.71 to 3.5 in the ND condition. Again, the

decrease across the sessions is itself not significant (F(2, 29)=2.272, p=0.125), but

the difference between the FD and the ND condition is (F(1, 29)=12.511, p=0.002).

Apparently, children in the ND condition produce almost 40% more CSSs than

children in the FD condition.

4.3. Discussion

There is a clear change in the children’s speech timing and their adherence to

the interaction script. Whereas many synchronization problems occur in their first

session with the robot, the second and third session are smoother. In particular, the

children are often waiting for the robot to talk, even if they know how to continue

without the robot’s prompt. For example, in the first interactions, having asked a

multiple-choice question, the children often go on to read the list of possible answers,
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thus causing the robot to barge-in with the possible answers request, while in the

subsequent interactions, they wait for the request from the robot before reading the

list. Conversely, when the robot asks a question, children might answer straightaway

in their initial interaction, again causing the robot to barge-in, whereas in the later

interactions they wait for a prompt from the robot. To summarize, children seem to

adapt the timing of their speech to the robot’s non-adaptive dialogue strategies, so as

to avoid speech overlaps. Similar channel exclusion phenomena have been observed

in another study of human turn-taking in HRI: subjects waited for the robot to

finish speaking before they spoke and tended to avoid simultaneous speaking after

a simultaneous start.12 While other researchers have also studied user speech timing

adaptation, they focused on different aspects, e.g., user response latency decrease

with practice during a single session,12 or user response latency adaptation to the

systems extrovert/introvert style.33

The results show an effect of the familiarity vs. neutral display condition. There

are fewer overlaps between child and robot speech in the familarity display condi-

tion, and forced waiting of the children for the robot to speak is twice as frequent in

the familiarity display condition. These children are apparently more lenient with

the robot when it makes mistakes (in particular speech timing mistakes). They

adapt their behavior more, for the sake of smooth turn-taking.

The children also adhere more to the foreseen interaction script in the famil-

iarity display condition, as shown by a lower relative number of speech segments

to which the robot does not react. A child’s speech segment is ignored either be-

cause it is out of the currently implemented domain of interaction (e.g., the child

confides about belly ache to the robot), or because the child “runs ahead” of the

implemented script, and provides information that the robot did not prompt for yet

in a situation where the robot is not flexible enough to react to this. The children

in the familiarity display condition seem more committed to respect the robot’s

expectations concerning the interaction script, once they understand them.

The children in the neutral display condition appear to produce more speech

segments. What our analysis does not make clear is whether this is a difference in

the amount of speech or only in the number of speech chunks. The latter could be

a consequence of there being more speech overlaps in the neutral display condition,

and thus the children’s speech is more fragmented, and we therefore count more

child’s speech segments. Moreover, since these children tend to deviate more from

the foreseen interaction script, resulting in a higher number of speech segments to

which the robot does not react, they may (have to) repeat their input more often

(until the appropriate system prompt appears).

What it is that leads to these effects is not clear yet. Data from the post-

questionnaires concerning the children’s relationship to the robot indicate that all

the children felt a strong connection with the robot and perceived it as a peer.

Even if the familiarity display condition appears to have no effect on these self-

assesments (with the caveat of the ceiling effect), the use of the child’s name in

the familiarity display condition seems to catch their attention and might result in



March 25, 2013 11:58 WSPC/INSTRUCTION FILE ijhr
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more concentration on the interaction with the robot. We speculate that this might,

consciously or not, lead to the children’s higher commitment to the (efficiency of)

the interaction.

The fact that the change in alignment is larger between the first and the second

session than between the second and third session seems to indicate that the children

adapt their behavior to the interaction with the robot quite fast, and this level

of adaptation persists. It is not clear whether the children’s adaptation is just a

consequence of becoming trained in “the rules of the (interaction) game”, or it

could be linked to social aspects of the interaction, and particularly the children’s

perception of and interaction with the robot as a social partner. The effect of the

familiarity display condition on the adaptation seems to corroborate the latter.

5. Conlusions and Outlook

Our research focuses on verbal behavior adaptation of children in face-to-face in-

teraction with a robot across multiple sessions. We built an HRI system using the

humanoid robot Nao and set up an experiment in which children interacted with the

robot in three sessions on different days, engaging in a quiz, dance or imitation ac-

tivity, in one of two conditions: the robot either gave explicit verbal and non-verbal

signals of being familiar with the user from previous interactions, or it did not.

The experiment system relied on a human wizard to interpret the user’s speech and

gesture input, but the rest of the system behavior was automatic, notably dialogue

management and system output behavior production.

We observed informally and in a preliminary analysis on a small subset of the

interactions that the children adapted various aspects of their verbal and non-verbal

conversational behavior to the robot, including speech timing, speed and tone, ver-

bal input formulation, nodding and gestures, just as humans generally adapt to their

conversational interlocutors. We therefore carried out a follow-up systematic analy-

sis of all quiz interactions focusing on the children’s verbal turn-taking behavior. In

particular, we analyzed the timing of the children’s speech, and whether or not the

robot reacted to a child’s turn. We found that adaptation increases across multiple

sessions. Moreover, we found that children adapt their verbal turn-taking behavior

more readily when the robot gives explicit signals of familiarity with the child across

sessions, for example by using their name or referring to previous experiences. The

children who interact with a familiarity-displaying robot force themselves more to

wait with speaking, in order to avoid speech overlaps, and produce less turns that

end up ignored by the robot. So overall, there is more adaptation in the condition

with familiarity display in comparison to the condition where the robot’s behavior

is neutral in this respect.

One practical upshot of these results is that a robot explicitly displaying fa-

miliarity can elicit more cooperation from a (young) user leading to a smoother

communication. There might also be more tolerance towards such a system, despite

its inevitably imperfect interaction capabilities.
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In immediate future work we plan to extend the analysis to other aspects of

verbal behavior, especially verbal input formulation, and to the other activities

performed in the experiment.
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Heriberto Cuayáhuitl received a PhD degree in Informat-

ics from the University of Edinburgh in 2009. He has been

a postdoctoral researcher at the University of Bremen (2009-

2010), and the German Research Center for Artificial In-

telligence (DFKI) in Saarbrücken (2011-2012), both in Ger-

many. His research interests lie in machine learning meth-

ods for speech-based and multimodal interactive systems

exhibiting adaptive behaviour in unknown and uncertain environments.

Bernd Kiefer received his diploma in Computer Science from

the Saarland University in 1989. Since 1990, he works at DFKI in

Saarbrücken on various aspects of natural language processing.

One main research focus is the analysis of language by means

of constraint-based grammars, and the relation and transfor-

mation of the many existing formalisms in this area. Further-

more, he investigates the use and development of advanced

data structures and algorithms for NL processing in general.

Marco Nalin is program manager in the telemedicine

company Telbios S.p.A., based in Milan. He received his

M.Sc. degree in electronic engineering at the University of

Padova, Italy, in 2005. Since 2004 he has been working

as research scientist at San Raffaele Hospital, in Milan,

in the e-Services for Life and Health department, cooper-

ating on several projects funded by the EU Commission.

In January 2013, he joined the telemedince company Telbios S.p.A., cooperating

and supervising R&D projects. His research interests include personal health sys-

tems, mobile health management applications for personal wellbeing and disease



March 25, 2013 11:58 WSPC/INSTRUCTION FILE ijhr

Children’s Turn-Taking Behavior Adaptation in Multi-Session Interactions with a Humanoid Robot 27

prevention, telemedicine, cognitive robotics and edutainment, surgery robotics, en-

ergy management systems, cloud computing, privacy and security.

Ilaria Baroni is a research scientist at the San Raffaele Hos-

pital, Milan. She graduated at Politecnico di Milano in com-

puter science engineering (specialization in robotics). For her

thesis, she worked on hardware and software aspects of humanoid

robots. Since 2010, she has been working at San Raffaele in

the e-Services for Life and Health department, cooperating on

two projects funded by the European Commission (cloud com-

puting and cognitive robotics), contributing both to scientific

research and technical development activities. Her fields of investigation include per-

sonal health systems, self-management systems, patient monitoring systems, cogni-

tive robotics and edutainment, cloud computing, privacy and security.

Alberto Sanna graduated in Nuclear Engineering at Po-

litecnico di Milano. He has been in charge of healthcare

process re-engineering projects at the Scientific Institute of

San Raffaele since 1989, leading highly innovative Informa-

tion Technology and Automation & Robotics-driven clinical

projects in Nuclear Medicine, Clinical Lab, Hospital Phar-

macy, Ward and Surgical Room. Since 1999 he is direc-

tor of the e-Services for Life and Health Research Unit
(www.eservices4life.org) and is successfully managing many international R&D

projects.


