0209.001

0209.002

Galley: Article - 00209

Level 2

Computation, Philosophical Issues about

Matthias Scheutz, University of Notre Dame, Indiana, USA

CONTENTS

Introduction

What is computation?
Philosophical views of computation

Role of computation in cognitive science
Summary

‘Computation’ is a cluster concept and has been
characterized in many different ways (e.g. ‘the exe-
cution of algorithms’). It underwrites philosophical
analyses of what can be done in principle by a
mechanism, and is intrinsically connected to the
idea of manipulating symbols or representations
by formal rules.

INTRODUCTION

The notion of computation is undoubtedly one of
the very central, increasingly influential notions of
our time. It has captured the attention of research-
ers from many disciplines for different reasons. In
cognitive science it was the capacity of computers
to process information that inspired cognitive
psychologists to think of cognitive functions in
terms of programs and of the brain as a computer
running these programs. To be able to appreciate
this view of cognition and the central role of com-
putation within it, one needs a clear understanding
of what ‘computation” means and what computa-
tions are.

WHAT IS COMPUTATION?

An Intuitive Perspective

Like many widely used notions ‘computation” does
not have a single, clear-cut meaning, but rather,
qua cluster concept, takes on different meanings
depending on the context in which it is used. A
glance in Webster’s dictionary reveals the ordinary
language conception of ‘to compute’: derived from
the Latin ‘com + putare” — to consider, it means
something like ‘to determine or to calculate espe-
cially by mathematical means’. However, this def-
inition is rather vague and furthermore too
restrictive to do justice to the variety of uses to
which the notion of computation is put in computer
science alone.

More to the point is defining computation as ‘the
execution of algorithms’, which, in turn, puts the
burden on the notion of algorithm and what ‘execut-
ing an algorithm’ means. Roughly speaking, an
algorithm consists of a finite set of instructions,
which operate on certain entities (symbols, repre-
sentations of numbers, etc.) and can be implemented
in some mechanism. To execute an algorithm then
intuitively means to have the mechanism carry out
the instructions for any given input in a determin-
istic, discrete, stepwise fashion (without resorting
to random or analogue methods and devices). The
mechanism goes through a sequence of atomic
steps in such a way that (one or more of) these
steps correspond to some instruction, for all the
instructions specified by the algorithm. Note that
nothing is said about the nature of the mechanism
yet: it could be concrete or abstract, natural or arti-
ficial. Depending on the kind of mechanism, the
algorithmic specification will take different forms:
in the case of computers, it is expressed in a pro-
gramming language; in the case of humans, instruc-
tions may be given in ordinary language (as long as
the individual steps are clearly distinguishable and
described at a sufficient level of precision) — just
think of cooking recipes or the instructions on
public phones for making phone calls.

Computation defined as the execution of algo-
rithms does not commit one as to what the compu-
tation is about or what it is supposed to achieve.
Rather, it ties algorithmic descriptions to mechanic-
ally realizable processes. This leaves two issues to be
addressed: first, it needs to be made clear what a
mechanism is, and secondly a precise specification
of the notion of algorithm is required. The
following brief historical overview reveals the
origin of the idea of mechanism as well as that of
using representations for calculations.

0209.003

0209.004



0209.005

0209.006

0209.007

0209.008

Galley: Article - 00209

2 Computation, Philosophical Issues about

A Historical Perspective

The history of computation traces back to Leibniz
and before, when daring philosophers pondered
mechanical systems that could aid humans in per-
forming calculations, and possibly even calculate
by themselves without any assistance. The first
functioning mechanical calculators were built in
the seventeenth century and were composed of
various mechanical parts (such as gears, cogs,
etc.). Leibniz, having constructed calculators him-
self, was one of the first to envision an application
quite different from their typical commercial and
military use, that of ‘mechanical reasoners’. His
view that calculations, in particular, and logical
reasoning (i.e. thinking), in general, could be mech-
anized lies at the heart of the notion of computation
as used in cognitive science today.

Another crucial contribution to the modern
notion of computation is also a product of that
time (due to Descartes, Hobbes, Locke, and others),
namely the idea that reasoning or, more generally,
thinking involves representations. The mathematical
practice of using marks and signs as representa-
tions in calculations became a paradigm for
thought itself, as expressed by Hobbes” famous
dictum that everything done by our mind is a com-
putation (Pratt, 1987).

Computation was, therefore, already very much
tied to the idea of mechanically manipulating
representations, and prototypical manipulators
were found in the mechanical calculators of those
days. While many attempts were made at building
mechanical calculators up to the end of the nine-
teenth century (with varying success: e.g. see Wil-
liams, 1997), the computing capabilities of these
machines remained very modest. It was only the
twentieth century that witnessed major progress in
the construction of computers and the conception
of computing. This was largely due to two quite
independent developments: (1) the thorough lo-
gical analysis of the notions ‘formal system’ and
‘formal proof’ (leading to further studies of notions
such as “effectively computable function” and ‘algo-
rithm’), and (2) the rapid progression in the engin-
eering of electronic components (from vacuum
tubes, to transistors, to integrated circuits, and
beyond).

A Logico-philosophical Perspective

In the 1930s, logicians laid the main philosophical
groundwork for a well-defined formal notion of
computation in their attempt to make the intuitive

notion of computation, then called ‘effective calcul-
ability’, formally precise. Being logicians, they were
solely concerned with the class of functions (over
the positive integers) that can be effectively calcu-
lated in principle — besides, digital computers did
not exist yet. Church (1936) was the first to give this
class of effective calculable functions a formal char-
acterization through a definition postulate, which
later came to be known as ‘Church’s Thesis’ (CT):
‘We now define the notion ... of an effectively cal-
culable function of positive integers by identifying
it with the notion of a recursive function on positive
integers (or of a A-definable function of positive
integers)” (Church, 1936, p. 356).

While this was a first step to capture the meaning
of ‘computable’, it was not quite satisfactory, as CT
is silent about what ‘effectiveness’ of a calculation
means. As it stands, the notion of ‘effectively cal-
culable function’ implies that two ingredients are
needed to understand computation: a notion of
‘effective procedure or algorithm” and a notion
of ‘function computed by an algorithm’. The latter
can be straightforwardly explicated: it is the map-
ping obtained by pairing all possible inputs with
the corresponding outputs resulting from applying
the algorithm to them. The former, however, re-
ceived a satisfactory account only after Turing
(1936) had introduced his machine model of a
‘computer’, which resulted from his analysis of
the possible processes a human — what he then
called ‘the computer’ — can go through while per-
forming a calculation using paper and pencil ap-
plying rules from a given finite set. It was crucial to
Turing’s conception of computation that the
human computer follow the rules ‘blindly’, that is,
without using insight or ingenuity. In his analysis
of the limitations of the human sensory and mental
apparatus five major constraints for doing ‘auto-
matic computations’ crystallize: (1) only a finite
number of symbols can be written down and used
in any computation; (2) there is a fixed bound on
the amount of scratch paper (and the symbols on it)
that a human can ‘take in” at a time in order to
decide what to do next; (3) at any time a symbol
can be written down or erased (in a certain area on
the scratch paper called ‘cell’); (4) there is an upper
limit to the distance between cells that can be con-
sidered in two consecutive computational steps; (5)
there is an upper bound to the number of ‘states of
mind’ a human can be in, and the current state of
mind together with the last symbol written or
erased determine what to do next.

Turing then defined a mathematical model of an
‘imagined mechanical device’ that satisfies all of
the above, later referred to as a ‘Turing machine’

0209.009

0209.010



0209.011

0209.012

Galley: Article - 00209

Computation, Philosophical Issues about 3

(TM) by Church. A TM consists of an unbounded
tape divided into squares, each of which can hold
exactly one symbol, a tape head for reading and
writing symbols from a given alphabet on the
squares, and a controller, which is in exactly one
of finitely many states at any given time. Each
computational step of the machine first involves
reading the symbol under the tape head and then,
depending on the current state of the controller,
writing a new symbol on the square, possibly
switching to another state and possibly moving
the tape head one square to the left or to the right.
‘The computation proceeds by discrete steps and
produces a record consisting of a finite (but un-
bounded) number of cells, each of which is blank
or contains a symbol from a finite alphabet. At each
step the action is local and is locally determined,
according to a finite table of instructions.” (Gandy,
1988, p. 81). This way the TM became a model of
human computing, an idealized model to be precise,
since it could process and store arbitrarily long, finite
sequences of symbols. The TM model is also a very
abstract model, for it only captures high-level pro-
cesses that take place in humans when they com-
pute (as opposed to low-level neuronal processes,
for example).

Turing intended his analysis to show that any
function computable by a human being following fixed
rules can be computed by a TM. And, furthermore, he
also believed the converse, that every function
computed by a Turing machine could (in principle)
be computed by a human computer. Note that this
equivalence per se does not preclude humans from
being able to find answers to problems (expressed
in terms of functions) which no TM can compute
(e.g. using intuition).

PHILOSOPHICAL VIEWS OF
COMPUTATION

Turing Computability and Beyond

The logico-philosophical analyses of the intuitive
notion of computation led to the crucial insight that
different attempts to characterize it can all be
proven extensionally equivalent: recursive func-
tions, A-definable functions, and TM-computable
functions all define the same class of functions.
These equivalence results are possible, because
what ‘computing’ means with respect to any of
the suggested formalisms is expressed in terms
of functions from inputs to outputs, which are
used as mediators in the comparison of the
various classes of functions defined by the different

formalisms. Later, other formalisms such as Mar-
kov algorithms, Post systems, universal grammars,
PASCAL programs, as well as various kinds of
automata, were also shown to give rise to the
same class of functions. Hence, by CT, any of the
above mentioned formalisms captures our intuitive
notion of computation, that is, what it means to
compute. (Some disagree with this conclusion, argu-
ing that the equivalence results capture only a re-
stricted notion of computation as shared by certain
philosophers of mathematics and logicians, e.g.
Sloman (1996).)

Common to all the above computational formal-
isms (besides their attempts to specify formally the
intuitive notion of ‘computation’) is their property
of being independent from the physical: computa-
tions in any of these formalisms are defined without
recourse to the nature of physical systems that (po-
tentially) realize them. Even the TM model, which
is often considered the prototype of a ‘mechanical
device’, does not incorporate physical descriptions
of its inner workings, but abstracts from the mech-
anical details of a physical realization. The first to
incorporate physically motivated mathematical
constraints into a formal model of computation
was Gandy (1980) in his attempt to define a notion
of computation for any discrete, deterministic,
physical machine. He formulated five conditions
to determine whether any system qualifies as a
‘mechanical machine’ and proved that any function
computable by a discrete deterministic device (in
his sense) is effectively computable and vice versa.
Hence, TM-computability (i.e. effective comput-
ability) and computability by mechanical devices
are equivalent notions. Some even extend the claim
by suggesting that the behaviour of any finitely
realizable physical system can be ‘computed’ (in
the sense of ‘perfectly simulated”) by a TM (e.g.
see Deutsch, 1985).

It is not clear, however, whether computation
should be equated with ‘effective computability’,
since there are, at least in principle, imaginable
computing devices that give rise to ‘Super Turing
computability” (i.e. compute functions that no TM
can compute). An example of such a device is Tur-
ing’s ‘oracle machine’ (O-TM), which is a TM with
additional atomic operations to query an ‘oracle’.
The oracle itself is a device that somehow produces
values of a particular (possibly TM-uncomputable)
function — how the results are obtained is left un-
specified. It is easy to see that any O-TM with an
oracle for any uncomputable function can compute
more functions than any TM. Whether such a ma-
chine could be physically realized is an open ques-
tion (maybe there are physical quantities that

0209.013

0209.014



0209.015

0209.016

0209.017

Galley: Article - 00209

4 Computation, Philosophical Issues about

happen to encode some TM-uncomputable func-
tion). The interesting point is simply that an
O-TM would be perfectly mechanistic in the clas-
sical sense without being effective as it uses some
noneffective device, namely the oracle. O-TMs,
hence, drive a wedge between the notions of ‘ef-
fectiveness’ and ‘mechanism’ (e.g. see Copeland,
2000). A similar point can be made with respect to
the notions of ‘effectiveness” and ‘algorithm’.

There are other suggestions along the same lines
coming from neural network research: it can be
shown, for example, that certain neural networks
(consisting of about 1000 neurones) with rational-
valued connection weights between neurones can
compute any TM-computable function (Siegel-
mann and Sontag, 1995). And if real-valued
weights are allowed, they can compute any func-
tion whatsoever.

Other Construals of Computation

Although TMs have become the canonical models
of computation and permeate various academic
disciplines in that role, there are other construals
targeted more towards possible philosophical
merits and potential practical applications of com-
putation. Following Smith (forthcoming), for
example, the following views should all be distin-
guished as they emphasize and capture different
aspects of computation:

1. formal symbol manipulation: the manipulation of sym-
bols by virtue of their formal properties (without
regard to possible interpretations or semantic con-
tent);

2. effective computability: what can be done effectively by
a mechanism;

3. rule-following or execution of an algorithm: what is in-
volved in following rules or instructions;

4. finite (digital) state machines: automata with a finite set
of internal states;

5. information processing: what is involved in storing, ma-
nipulating, and displaying information;

6. interactive systems: computation as interaction and
communication embedded in an environment;

7. dynamical systems: computation expressed in the lan-
guage of dynamic systems (using concepts like state
space, trajectory, attractors, etc.).

To some extent all of the above notions play a role
in various disciplines (especially in computer sci-
ence), but some of them are more dominant in
specific intellectual areas: (1) figures mainly in
philosophical debates and meta-mathematics,
where (2) and (3) are tied to logical investigations;
(4) is largely an engineering concept, while (5)—(7)
have become increasingly important in cognitive

science, the theory of complex systems, and, of
course, computer science.

While the above list is far from exhaustive, it is
intended to give a flavour of the wealth of different
aspects the notion of computation has acquired,
especially in the course of the last century. For
that very reason, it is argued, we are still lacking
the “grand unified theory’ (similar to physics) that
can accommodate all these multiple facets, if such a
theory is possible in the first place.

Real-life Computation

Despite the theoretical success of TM-computabil-
ity, computer science qua practice is concerned not
so much with the limits of what can be computed in
theory, but rather with the more modest, mundane
question of what can be computed within reason-
able limits (using given resources). A whole new
discipline within computer science called ‘com-
plexity theory” — an offspring of the classical inves-
tigations of effective computability —is dedicated to
the study of what is computationally feasible. Still
other issues arise from computational practice with
which the TM model, for example, can hardly cope,
in particular, the need for computational systems
(embedded in various kinds of devices) to continu-
ally interact with their environments: what func-
tion does an operating system compute (or the
world wide web, for that matter)? According to
the classical view, such questions cannot be
answered easily as the underlying functions are
simply not defined for inputs on which computa-
tional processes run forever. Yet, there is a strong
intuition that computational processes as they
occur in operating systems or web browsers do
have a purpose, can accomplish certain tasks or
fail at achieving them. As a consequence the notion
of ‘computation of a function’, and with it the clas-
sical notion of algorithm, had to make room for the
notion of interaction:

Interaction is shown to be more powerful than rule-
based algorithms for computer problem-solving, over-
turning the prevalent view that all computing is
expressible as algorithms. The radical notion that inter-
active systems are more powerful problem-solving en-
gines than algorithms is the basis for a new paradigm
for computing technology built around the unifying
concept of interaction. (Wegner, 1997)

This paradigm shift from programs to processes
renders many of the old reservations to the notion
of computation obsolete, which were a conse-
quence of taking computation to be defined solely
in abstract syntactic terms thereby abstracting over

0209.018

0209.019

0209.020



0209.021

0209.022

Galley: Article - 00209

Computation, Philosophical Issues about 5

physical realization, real-world interaction, and se-
mantics. The new approach reveals computation,
contrary to standard orthodoxy, as interactive and
embodied, hence very much concerned with the
constraints imposed on computational processes
by the real world.

ROLE OF COMPUTATION IN
COGNITIVE SCIENCE

The Midwife: Computation and the Birth
of Cognitive Science

The independence of computations (in the sense of
TM- computations) from their physical realizers
was one major source of attraction for cognitive
psychologists in the late 1950s. The information-
processing capabilities of computers, an ability
thought to underlie human cognition, and the po-
tential of computer programs to specify exactly how
information is processed was another. Together
they led to the thought that cognition, viewed as
‘the processing of information’, could be com-
pletely understood and explained in terms of com-
putations: if cognitive functions are computations,
then explanations of mental processes in terms of
programs are scientifically justifiable without
having to take the ‘implementing’ neurological
mechanisms into account, similar to computers,
where it is the programs implemented on the com-
puter hardware, not the hardware itself, that ex-
plain (if not entirely, then at least for the most
part) what the computer does. The computer meta-
phor implicit in this view has been summarized as
the claim that ‘the mind is to the brain as the pro-
gram is to the hardware’ (Johnson-Laird, 1988)
(note that this should really read ‘the mind is to
the brain as computational processes are to the hard-
ware’ to avoid conflating the program—process dis-
tinction). Its guiding ideas eventually became so
prominent (originally in psychology, later in artifi-
cial intelligence) as to assist in the birth of cognitive
science and establish the computational claim about
mind, also called computationalism, as a genuine
research paradigm.

The Paradigm: Computation and the
Computational Claim about Mind

As with the notion of computation, computational-
ism is not a unified view, but construed differently
by philosophers, psychologists, or neuroscientists.
Various condensed slogan-like phrases such as ‘the
brain is a computer’, ‘the mind is the program of

the brain’, or ‘cognition is computation’ can be
found in the literature, to name just a few. Yet,
they cannot be taken at face value, for if they were
read together, they would equivocate essentially
distinct notions (such as program and process,
mind and cognition, etc.). Furthermore, depending
on their subdiscipline within cognitive science, re-
searchers stress different aspects of computations:
their information-processing capabilities, their
formal nature, their control functions, their poten-
tial to have semantics, and so on.

Common to different views of computationalism
are the assumptions that (1) mental processes are
computational processes and (2) the same kind of
relation that obtains between programs and com-
puter hardware (i.e. the implementation relation)
obtains between mental descriptions and brains
too. It follows that cognitive functions can be de-
scribed by and explained in terms of programs, and
that the right level of abstraction at which to under-
stand cognition is the computational level and not
the level of the implementing mechanism (i.e. the
brain), even though it might be helpful to know the
functional organization and role of certain brain
areas in determining what they implement.

Computationalism has many appealing facets,
especially when it comes to high-level cognition:
many features related to logic and language (such
as systematicity, productivity, compositionality,
and interpretability of syntax or the composition-
ality of meaning, e.g. see Fodor and Pylyshyn, 1988)
are supported by computations ‘almost for free’,
and many mental operations on various kinds of
representations such as rotating three-dimensional
images, searching for a good move in a chess game,
reasoning about other people’s behaviour, plan-
ning a route through a city avoiding construction
sites, etc. can be described computationally and
implemented on computers. After all, this is what
computers do: they manipulate symbol tokens (e.g.
strings of bits), some of which are representations
of the subject matter the computation is about.
These representations, in turn, have both formal
and semantic properties, of which the former are
causally efficacious. Computational processes then
manipulate symbols by virtue of their formal and
not their semantic properties (e.g. Fodor, 1981).

While computationalists take this to be a virtue of
their approach, it is a major shortcoming for others
and various arguments have been advanced to
establish that formal symbol manipulation is not
sufficient for human intentionality and semantics
(e.g. Searle’s Chinese Room, 1980) or that minds
are not TM-computable (e.g. Lucas’s Godelian ar-
gument, 1961). More recently, connectionists and

0209.023

0209.024

0209.025



0209.026

0209.027

Galley: Article - 00209

6 Computation, Philosophical Issues about

dynamicists have tried to replace the notion of
computation with alternatives, arguing that the
representational level of description of a cognitive
system so crucial to computationalism cannot be
taken for granted. In fact, most dynamicists find
the symbolic/representational level of description
superfluous altogether and argue instead for an
explanation of cognition in terms of dynamic systems
(e.g. Port and van Gelder, 1995).

The Method: Computation and the
Simulation of Cognition

While there are undoubtedly tendencies in cogni-
tive science to replace the classical notions of com-
putation, either by dynamic systems or by more
adequate notions of computation (e.g. notions
based on interaction, real-time constraints, etc.),
even those opposed to computationalism agree at
least that computation is still a valuable tool in the
study of cognition (regardless of its explanatory
success). In particular, computer simulations and
computational models (of aspects) of cognition
have become increasingly important in cognitive
science. While computational models, at least to
some extent, presuppose that whatever is modelled
is computational, simulation models do not have to
make such an assumption. Rather, they implement
a computational approximation of the mathemat-
ical description of the phenomenon under scrutiny,
and as long as any resultant error is within prede-
termined bounds the simulations are considered
‘models’. In particular, they might elucidate com-
plex dynamical relations between various parts of
the simulated model, which are difficult to see (and
often not ‘visible” at all) from the formal, mathemat-
ical description. From trajectories through complex
state spaces of dynamic systems to evolutionary
processes in artificial environments, computer
simulations provide a testbed for cognitive scien-
tists to evaluate their hypotheses without always
having to study them in ‘real systems’. Further-
more, simulations can focus on different aspects
of cognitive systems at different levels of descrip-
tion, they can be reproduced, slowed down, sped
up, and modified in various other ways (e.g. simu-
lating damage, disease, and various other dis-
orders), in which no real cognitive system could
be manipulated while preserving its normal func-
tionality (obviously, ethical considerations would
enter the picture here as well).

A crucial difference between simulation and
computational models is, however, that the former

usually does not share all the relevant causal prop-
erties with the modelled system, whereas the latter,
being a computational model of computational
processes, can in principle have the right causal
structure (depending on various constraints on
inputs, outputs, real-time, etc.).

SUMMARY

‘Computation’ is a multifarious notion, which
defies a single, simple characterization. Yet, it is
often explicated as ‘executing an algorithm’, pre-
supposing some sort of mechanism able to ‘exe-
cute’ instructions as specified by the algorithm.
For many logicians and philosophers it was the
notion of Turing machine computability that for
the first time gave precise meaning to the intuitive
notion of computation understood as ‘blindly
following rules or instructions’, thereby answering
the question of what ‘effective calculability” is sup-
posed to mean. The connection of ‘effectiveness’
and computation goes back at least to the seven-
teenth century, when ‘calculation” was very much
tied to mechanical devices. Only in the twentieth
century did effectiveness, mechanism, and compu-
tation become separated, when alternative models
of computations such as interactive systems were
considered. Various construals of the notion of
computation (such as ‘formal symbol manipula-
tion” or ‘information processing’) emphasize differ-
ent aspects of computation, although none of them
seems to capture what computation may signify in
its entirety. In cognitive science, computation
played a crucial role right from the start. It figured
prominently in the emergence of the discipline
and became the basis of computationalism, the
paradigmatic view that mental processes are com-
putational, leading to the development of computa-
tional models of cognitive functions. Even for
researchers objecting to computationalism, compu-
tations can be of great utility when used to simulate
cognitive processes.

References

Church A (1936) An unsolvable problem of elementary
number theory. American Journal of Mathematics 58:
345-363.

Copeland BJ (2000) Wide vs. narrow mechanism. Journal
of Philosophy 97: 5-32.

Deutsch D (1985) Quantum theory, the Church-Turing
principle and the universal quantum computer.
Proceedings of the Royal Society, Series A, 400: 97-117.

Fodor JA (1981) Representations. Cambridge, MA: MIT
Press.

0209.028



Galley: Article - 00209

Computation, Philosophical Issues about 7

Fodor JA and Pylyshyn ZW (1988) Connectionism and
cognitive architecture: a critical analysis. Cognition 28:
3-71.

Gandy R (1980) Church'’s thesis and principles for
mechanism. In: Barwise J, Keisler H] and Kunen K (eds)
Proceedings of the Kleene Symposium. New York: North-
Holland Publishing Company.

Gandy R (1988) The confluence of ideas in 1936. In:
Herken R (ed.) The Universal Turing Machine: A Half-
Century Survey. Berlin: Kammerer & Unverzagt.

Johnson-Laird PN (1988) The Computer and the Mind.
Cambridge, MA: Harvard University Press.

Lucas JR (1961) Minds, machines, and Godel. Philosophy
36: 122-127.

Port R and Van Gelder T (1995) Mind as Motion:
Explorations in the Dynamics of Cognition. Cambridge,
MA: MIT Press.

Pratt V (1987) Thinking Machines — The Evolution of
Artificial Intelligence. Oxford, UK: Basil Blackwell.

Searle J (1980) Minds, brains and programs. The
Behavioral and Brain Sciences 3: 417-424.

Sloman A (1996) Beyond Turing equivalence. In: Millican
PJR and Clark A (eds) Machines and Thought: The Legacy
of Alan Turing, vol. I, pp. 179-219. Oxford, UK:
Clarendon Press.

Siegelmann HT and Sontag ED (1995) On the
computational powers of neural nets. Journal of
Computer System Sciences 50: 132-150.

Smith BC (forthcoming) The Age of Significance. An Essay
on the Foundations of Computation and Intentionality, vols
I-VII. Cambridge, MA: MIT Press.

Turing AM (1936) On computable numbers, with an
application to the Entscheidungsproblem. Proceedings of
the London Mathematical Society, Series 2, 42: 230-265.

Wegner P (1997) The paradigm shift from algorithms to
interaction. Communications of the ACM 1997.

Williams MR (1997) A History of Computing Technology,
2nd edn. Los Alamitos: IEEE Computer Society Press.

Further Reading

Cleland CE (1993) Is the Church-Turing thesis true?
Minds and Machines 3: 283-312.

Copeland BJ (1996) What is computation? Synthese 8 (3):
335-359.

Davis M (1958) Computability and Unsolvability. New
York: McGraw-Hill Book Company.

Dietrich E (1990) Computationalism. Social Epistemology 4
(2): 135-154.

Gardner H (1985) The Mind’s New Science: A History of the
Cognitive Revolution. New York: Basic Books.

Haugeland ] (1985) Mind Design I. Cambridge, MA: MIT
Press.

Haugeland J (1996) Mind Design II. Cambridge, MA: MIT
Press.

Herken R (ed.) (1988) The Universal Turing Machine: A
Half-Century Survey. Berlin: Kammerer & Unverzagt.

Hopcroft JE and Ullman JD (1979) Introduction to
Automata Theory, Languages, and Computation.
Massachusetts: Addison-Wesley Publishing Company.

Searle J (1992) The Rediscovery of Mind. Cambridge, MA:
MIT Press.

Smith BC (1996) The Origin of Objects. Cambridge, MA:
MIT Press.

Sterelny K (1990) The Representational Theory of Mind.
Oxford, UK: Blackwell.

Van Gelder TJ (1998) The dynamical hypothesis in
cognitive science. The Behavioral and Brain Sciences 21:
615-665.

Webb J (1980) Mechanism, Mentalism, and Mathematics: An
Essay on Finitism. Boston, MA: Reidel.

Glossary

Algorithm A sequence of instructions that can be imple-
mented and executed by some computing device.

Attractor A region in state space towards which all tra-
jectories within a certain range lead (i.e. no trajectory
within a certain range of the region will ever leave the
region).

Computationalism The foundational view in cognitive
science that mental processes are computational pro-
cesses.

Dynamic System A mathematical system of differential
or difference equations in finitely many variables, where
time is the independent variable.

Effective calculability The formal transformation of
strings of symbols (possibly representing numbers) by
applying finitely many transformation rules.

Implementation The relation between a program de-
scription of a computation and the physical system
‘executing’ the computation.

Lambda-definable function A function definable in
Church’s -calculus.

Mechanism A physical system composed of various
interacting parts, whose behaviour can be described
in the physical language of mechanics.

Recursive function A function in the class of functions,
which contains three initial functions (the ‘zero function’
z(x) = 0, the ‘successor function’ s(x) = x+1, and the
‘identity function’ id(x) = x) and is closed under three
operations on functions(composition, primitive recur-
sion, and minimization).

State space The space of all possible states (i.e. pos-
sible values of all variables) of a dynamical system.

Trajectory A sequence of states in state space.

Turing machine An abstract computing device consist-
ing of a finite, but unbounded, tape divided into
squares, and a finite controller with a read/write tape
head that can read symbols from and write symbols on
the tape.

Keywords: (Check)

Computation; computationalism; Turing machine; algorithm; representation



